
Scale-aware Black-and-White Abstraction of 3D Shapes

YOU-EN LIN, National Tsing Hua University
YONG-LIANG YANG, University of Bath
HUNG-KUO CHU, National Tsing Hua University

scale-aware abstraction
3D shapes 2D B&W images

Fig. 1. Proposed computational framework for automatic generation of 2D black-and-white abstractions from 3D shapes which preserves geometric and
structural properties at different scales. Scales of abstraction results in both paper and supplementary material were adaptively selected such that feature lines
are recognizable and consistent over different scales.

Flat design is a modern style of graphics design that minimizes the number
of design attributes required to convey 3D shapes. This approach suits de-
sign contexts requiring simplicity and efficiency, such as mobile computing
devices. This ‘less-is-more’ design inspiration has posed significant chal-
lenges in practice since it selects from a restricted range of design elements
(e.g., color and resolution) to represent complex shapes. In this work, we
investigate a means of computationally generating a specialized 2D flat rep-
resentation - image formed by black-and-white patches - from 3D shapes. We
present a novel framework that automatically abstracts 3Dman-made shapes
into 2D binary images at multiple scales. Based on a set of identified design
principles related to the inference of geometry and structure, our framework
jointly analyzes the input 3D shape and its counterpart 2D representation,
followed by executing a carefully devised layout optimization algorithm.
The robustness and effectiveness of our method are demonstrated by testing
it on a wide variety of man-made shapes and comparing the results with
baseline methods via a pilot user study. We further present two practical
applications that are likely to benefit from our work.

CCS Concepts: • Computing methodologies→ Computer graphics;

Additional Key Words and Phrases: black-and-white image, scale-aware
abstraction, joint 2D/3D analysis, layout optimization

ACM Reference Format:
You-En Lin, Yong-Liang Yang, and Hung-Kuo Chu. 2018. Scale-aware Black-
and-White Abstraction of 3D Shapes. ACM Trans. Graph. 37, 4, Article 1
(August 2018), 11 pages. https://doi.org/10.1145/3197517.3201372

Authors’ addresses: You-En Lin, Department of Computer Science, National Tsing Hua
University, unlin@livemail.tw; Yong-Liang Yang, Department of Computer Science,
University of Bath, y.yang@cs.bath.ac.uk; Hung-Kuo Chu, Department of Computer
Science, National Tsing Hua University, hkchu@cs.nthu.edu.tw.

1 INTRODUCTION
With the recent development of mobile computing technologies, a
fascinating design style called flat design has gained ever-increasing
popularity. In contrast to ‘skeuomorphic’ design, which aims for
a high degree of realism using ornamental design attributes (e.g.,
shadows, gradients, textures, or decorations, etc.), flat design re-
lies on the minimum number of stylistic elements required for the
illusion of three dimensions [Page 2014]. The resulting design out-
comes hold a number of advantages, such as improved readability
and legibility, easy compatibility of design style, and less network
and memory cost, etc. These advantages serve a range of design
contexts applicable to mobile apps, PC desktops, and webpages.
Among different styles of flat design, a specialization that ab-

stracts 3D shapes into 2D binary images is particularly interesting.
It applies the minimum set of colors (i.e., black and white) necessary
for 2D design to create a concise abstraction of its 3D counterpart
(see Figure 2). Due to the constraints on colors and the reduction
of dimensions from 3D to 2D, how to preserve the defining char-
acteristics of the 3D geometry and allow visual perception of the
underlying 3D shapes become extremely important.

Various intriguing design elements have been used by designers
to better infer 3D geometry. For example, as shown in Figure 2, to re-
flect shape occlusion and facilitate depth perception, designers often
introduce a halo-like gap region on occluded sections. Designers add

Fig. 2. Example designs of 2D black-and-white abstractions of 3D shapes
created by designers. Design elements such as halo-like gap region (red
box), hollow line (blue box) and patch (green box) are used to better infer
3D geometry. Image courtesy of https://iconmonstr.com/.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201372
https://doi.org/10.1145/3197517.3201372
https://iconmonstr.com/


1:2 • Lin, Yang, and Chu

hollow lines and patches to generate high contrast and emphasize
the geometric features of individual shape components as well as
the spatial relations between components. To facilitate the design
process, these design elements and others have been collated into
reference for practical applications [Abdullah and Hüber 2006]. Yet,
even within these guidelines and with the help of modern graphics
design tools (e.g., Adobe Illustrator), the design process still demands
a high level of skill and is time-consuming. The designer needs to
manually manage perspectives, trace boundary lines, and create
design elements.
Some techniques exist for automatic shape depiction [Cole et al.

2008] and shape abstraction [Mehra et al. 2009; Yumer and Kara
2012]; However, the former can only generate 2D stylized drawing
in a different context (line-based drawing), while the latter focuses
on abstractions in 3D. By combining pieces from existing pictogram
examples, Liu et al. [2016] present a 2D data-driven iconifiction
framework without considering comprehensive geometric informa-
tion in 3D. Therefore, we are still short of an effective tool for the
present design context based on 3D shapes.

In this paper, we present a novel computational design framework
to automatically generate 2D black-and-white abstractions from 3D
man-made shapes (see Figure 1). The keys to our framework are a
number of design principles selected from existing examples and de-
sign guidelines, and a set of shape analysis and layout optimization
algorithms implementing these design principles. The result is an
appealing black-and-white abstraction that well represents the char-
acteristics of the input shape. Our framework takes advantage of the
easy access to 3D man-made shapes provided by online repositories,
allowing for a variety of quality results from shapes of different
categories. Our optimization algorithm is also scale-aware in the
sense that it can generate an adaptive abstraction layout according
to the specific image size, such that only more prominent features
are preserved at smaller scale to avoid visual cluttering. The efficacy
of our framework is demonstrated through extensive comparison
and a user study. We also exploit our results for two applications
that can benefit from our black-and-white abstraction.
In summary, our work makes three major contributions:
• We present the first computational design framework capable
of automatically generating 2D black-and-white abstractions
of 3D man-made shapes.

• We devise a scale-aware layout optimization algorithm that
enables an adaptive abstraction layout responsive to image
size.

• We demonstrate novel applications based on the abstraction
layout generated by our framework.

2 RELATED WORKS

2.1 Black-and-white Image Stylization
Image stylization studies the conversion of an input image into a new
image of a specific style. Several works aim at generating stylized
black-and-white images. Xu and Kaplan [2008] depict continuous
tones using only black and white colors. They model the problem
as graph optimization over a connectivity graph of the segmented
input image. Although it also employs graph-based color labelling,
our work is fundamentally different in the following aspects: 1)

our input is 3D shapes; 2) our formulation is based on realizing
flat design guidelines; and 3) our graph contains boundary nodes
to create halo effects. Rosin and Lai [2010] abstract a given image
with minimal tones (between 3 to 10). Their approach of abstracting
image elements formed by lines and blocks is similar to ours, but
they try to preserve information by using up to 10 colors instead of
only black and white. Li and Mould [2015] enhance the contrast of a
given image by converting it into a black-and-white representation.
They use an efficient filter-based method instead of exhaustively
optimizing tone assignments as suggested by previous works. Al-
though these methods can generate black-and-white images, they
are restricted to the 2D domain. Our method enables results from
various views and better conveys the geometry of the underlying 3D
shapes. It is possible to render a 2D image from 3D shape, followed
by simply applying black-and-white image stylization. However,
the result is heavily affected by rendering parameters, such as sur-
face material and lighting conditions. Therefore, we propose a joint
2D/3D solution which is intrinsic to the geometry of the input shape.

2.2 Line Drawing of 3D Shapes
Many computer graphics methods have been proposed to depict 3D
shapes through computer-generated line drawings [Rusinkiewicz
et al. 2008]. There are two major approaches to this problem: image
space solution and object space solution. Given that our input is a
3D shape, we mainly discuss the latter approach. Hertzmann and
Zorin [2000] use surface silhouettes in which front-facing polygons
meet back-facing ones to depict 3D shapes. DeCarlo et al. [2003]
extract suggestive contours as feature lines based on surface cur-
vature. Judd et al. [2007] propose apparent ridges that generalize
curvature-based feature lines with view-dependent curvature. Cole
et al. [2008] comprehensively evaluate the effectiveness of different
methods through comparison with line drawings created by artists.
While these methods can generate appealing line drawings from
different views, they all focus on a line-based representation. This
differs from our objective of abstracting 3D shapes in a patch-based
manner. These line drawings cannot be effectively used for quality
patch-based abstractions (see the comparison and user study in
Section 7).

2.3 View-Dependent Shape Segmentation
3D shape segmentation investigates the decomposition of a shape
into distinct parts that are semantically meaningful or practically
useful, benefiting applications such as mesh parameterization, shape
retrieval, and shape editing [Shamir 2008]. We aim at generating
2D abstractions from 3D shapes. The result is a set of 2D binary
patches constituting the 2D projection of the 3D shape, which is
obviously view-dependent. For view-dependent shape segmentation,
Kolliopoulos et al. [2006] decompose 3D scenes with a normalized
graph cut. Geometric information such as depth, normals, object
ID and group ID are encoded in a multi-channel image, and the
segmentation is performed in the image space. Eisemann et al. [2009]
propose a view-dependent segmentation algorithm to convert a
3D scene into multiple vector graphics layers, which can be easily
edited by artists to create 2D vector illustrations. Their segmentation
algorithm is performed in 3D by first extracting visible surfaces, then

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.



Scale-aware Black-and-White Abstraction of 3D Shapes • 1:3

?

Contrast Halo Hollow

Consistency Prominence Clarityshape graph patch graph

(a) Input shape (b) Joint 2D/3D shape analysis (c) Abstraction layout optimization (d) B/W abstraction
Fig. 3. Overview of proposed framework. Given an input 3D shape (a), our framework first performs joint 2D/3D shape analysis to encode geometric and
structural properties into a shape graph and a patch graph (b). An abstraction layout optimization is then conducted according to design principles (c) to
generate 2D black-and-white abstraction (d). For clarity, we only illustrate a subset of graph nodes in shape graph and patch graph, and the edge direction in
patch graph is not shown.

constructing a graph description of the overlapping area, and finally
using graph cut to divide the graph into non-overlapping layers. This
geometric approach suits our needs for segmentation, despite its
computational complexity. Since the hidden layers are unnecessary
for our objective, we end up with an efficient segmentation approach
in the image space which is suitable for our problem (detailed in
Section 5.2).

2.4 Enhanced Depth Visualization
Designers often impose visual cues, such as the halo effect in 2D
depictions, to emphasize 3D occlusion, and thereby enhance depth
perception of the underlying 3D shapes. In the field of graphic design
and visualization, a similar idea has been explored in several studies
focused on altering the appearance of the depiction in a depth-
dependent way. Appel et al. [1979] use line halo effects to eliminate
hidden lines to enhance the wireframe-based shape visualization.
Elber [1995] extends this idea by considering other visual properties
of the lines, such as line width and color intensity. Luft et al. [2006]
enhance depth perception of an image by unsharpening the depth
map to create darkened halo effects around depth discontinuities.
Bruckner et al. [2007] propose to use flexible volumetric halos to
enhance depth perception. The halo effect used in this context is
visually similar to ambient occlusion, a real-time technique for the
rendering of approximate global illumination. Everts et al. [2009]
compute GPU-accelerated line halos according to depth difference
to generate black-and-white visualization of large datasets formed
by a significant number of lines. In our work, we also take into
account 3D depth and generate halo-like regions in occluded patches
to enhance depth perception of the resulting 2D black-and-white
abstraction. The difference is that we enable local halo effect based
on an optimization approach. This not only avoids visual cluttering
when the scale of the abstraction shrinks, but also strikes a good
balance with other visual cues.

3 DESIGN PRINCIPLES
By investigating existing flat designs created by artists and docu-
mentations on design guidelines [Abdullah and Hüber 2006], we
have identified a set of important design principles, which are used
to guide subsequent analysis and optimization (see Figure 4).

Contrast. The majority of the layout, especially the patches inci-
dent to the white background, has to be black to clearly depict the
foreground shape.

Halo. Designers often utilize the halo effect (white linear gap
between two patches) to highlight the depth ordering of the under-
lying geometry. To avoid depth ambiguity, a linear gap is created
within the occluded patch, which has a larger depth value along the
viewing direction.

Hollow. An isolated patch enclosed entirely by another patch is
often depicted in a different color for better comprehension.

Consistency. Patches originating from the same 3D shape compo-
nent or repetitive components favor a consistent color. This helps to
preserve the shape semantics, and allows easy shape and structure
understanding.

Prominence. Prominent feature lines are often used to better con-
vey details of the underlying geometric shape.

Clarity. Cluttered layout should be avoided to increase readability.
Note that in practice these principles are often in conflict. For

example, highlighting all the prominent features at a small scale
would cause visual cluttering, which goes against the principle of
clarity. Halo and hollow effects cannot co-exist between two patches
with both occlusion and inclusion relations. Thus, we leverage an
optimization approach to generate abstraction layout in a compre-
hensive way (see Section 6).

? ✓

Contrast Halo Hollow

Consistency Prominence Clarity

Fig. 4. Set of design principles applied to abstraction layout optimization.

4 OVERVIEW
Given an input 3D man-made shape, a viewing direction, and a
specific scale, our framework automatically generates a 2D black-
and-white abstraction of the input shape. We assume a triangle

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:4 • Lin, Yang, and Chu

mesh representation of the input shape due to its generality and
popularity. The resulting abstraction is a monochromatic image
with white background. The foreground is a black-and-white lay-
out composed of patches in either color, altogether forming a 2D
projection of the 3D shape. The projection can be either perspec-
tive or orthographic, depending on user specification. There are
two types of patches in the abstraction layout: shape patches that
abstract the input shape, and boundary patches that highlight either
the geometric feature or the spatial structure of the input shape.

As shown in Figure 3,
our framework consists
of two main components,
joint 2D/3D shape analysis
and abstraction layout op-
timization. The former fo-
cuses on understanding the
geometry and structure of
the input 3D shape along with its 2D projection. More specifically,
we jointly analyze the geometric and spatial relations between indi-
vidual components in 3D and their 2D counterparts, i.e., patches in
2D. The output comprises a shape graph and a patch graph, which
encode the geometric and structural properties of the input shape
and its 2D counterpart (Section 5). This serves as the foundation for
the latter component, which optimizes the color of each 2D patch,
such that the black-and-white 2D patch layout optimally abstracts
the geometry and structure of the input shape (Section 6).

5 JOINT 2D/3D SHAPE ANALYSIS

5.1 3D shape analysis
The input to our framework is a multi-component man-made shape
represented by triangle mesh, denoted as M = {C1, ...,CN }. We
divide the whole mesh into individual components based on mesh
face connectivity. To unify parameter settings, we normalize the
input shape into a bounding box ranging from -1.0 to 1.0 along
x , y, and z axis. We encode the structure of the multi-component
shape using an undirected shape graph Gs (Ns , Es ), where graph
node Ci ∈ Ns represents individual component, and graph edge
Ei j ∈ Es connects two congruent components Ci and Cj . For sim-
plicity, we use Ci to denote both the i-th mesh component and its
corresponding graph node. We rely on the same strategy applied in
the work of [Yang et al. 2015] to identify congruent components. We
first estimate the oriented bounding box (OBB) of each component.
Then the congruency between two components is determined by
checking if both OBBs and shapes can be well aligned (see Figure 5).
Note that the adjacency relation between individual components is
not considered here in 3D, since it can be easily affected by inter-
and intra- occlusions when projecting the shape from 3D to 2D.
We also extract geometric features by detecting sharp mesh edges,
which allows for the highlighting of intra-component properties
(details in Section 6.1).

5.2 2D shape analysis
The 2D counterpart of the input 3D shape is generated by camera
projection using a standard graphics rendering pipeline. In order to

preserve the structural properties of the input shape, we employ a
specialized rendering-based segmentation algorithm which jointly
considers the 3D shape and its 2D projection. We first render the
3D shape into a 2D image while recording triangle face ID in the
frame buffer. Then at the pixel level, we perform a flooding algo-
rithm by grouping pixels from neighboring faces according to mesh
connectivity, resulting in a set of 2D patches each of which consists
of pixels projected from connected triangle faces in a component.
Figure 6 illustrates the process. Note that one mesh component
may lead to multiple 2D patches due to occlusion by other compo-
nent(s) or self-occlusion. In practice, we use a rendering resolution
of 1600×1200. The viewing distance is 5.0 and field of view is 60◦.
Several results can be found in Figure 7.

We use a directed patch graph Gp (Np ,Nb , Ea , Ei ) to encode the
structural information of the patch segmentation. There are two
types of graph nodes. In addition to patch node Pi ∈ Np which repre-
sents individual 2D patch, we also create a boundary node Bi j ∈ Nb
for two neighboring patches Pi and Pj that share a common bound-
ary. The purpose of the boundary node is to better infer the 3D
spatial relation between neighboring patches through the genera-
tion of a halo effect when appropriate (for details, see Section 6). For
each patch node, we also record the ID of its corresponding mesh
component. Graph edges comprise two types: adjacency edges that
simply describe the adjacency between graph nodes, and inclusion
edges that indicate where one patch node is entirely enclosed by
another patch node. Two neighboring patches in the segmentation
define two adjacency edges with the direction from the occluding
patch node to occluded patch node, passing through the boundary
node in-between. The occlusion between two neighboring patches
is identified by locally checking the depth values from depth buffer.
Inclusion edges always point to the enclosed patch node. We de-
note the set of adjacency edges and inclusion edges as Ea and Ei ,
respectively. Illustrations of a shape graph and a patch graph can
be found in Figure 8.

6 ABSTRACTION LAYOUT OPTIMIZATION
Based on Gs and Gp constructed above, the second step is to assign
black or white color to each patch node Pi ∈ Np along with deter-
mining whether the halo effect should be created for each boundary
node Bi j ∈ Nb , to form a monochromatic abstraction layout of
the input shape. We formulate the layout optimization as a binary
labelling problem, since the color set comprises only black or white,
and the halo effect is either enabled or disabled. More specifically,
for each patch node Pi , we assign a binary color label ci for which

Fig. 5. We perform 3D shape analysis to identify congruent components
(denoted by consistent coloring) and unique components, i.e., those without
congruency (rendered in gray).

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.



Scale-aware Black-and-White Abstraction of 3D Shapes • 1:5

2
1 3

7 8 9

10 11
1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

11 11 11 11

10 11 11 11 11

1 2 2 2 3

1 1 1 2 3 3 3

1 1 1 1 2 3 3 3 3

7 7 7 8 9 9 9

7 7 7 7 8 9 9 9 9

21 3

7 8 9

10 11

4 5 6

(a) (b) (c) (d)

Fig. 6. Illustration of 2D patch generation. Given a 3D shape (a) with two
components, its 2D counterpart is generated using a standard graphics
rendering pipeline with hidden faces (face 4, 5, and 6) being eliminated (b),
resulting in rasterized image (c). A flooding algorithm is then performed
based on mesh connectivity to generate 2D patches (d). Boundaries between
patches are highlighted in red.

ci = 0 denotes black, and ci = 1 denotes white. For each boundary
node Bi j , we assign a binary label hi j to indicate whether halo effect
is enabled (hi j = 1) or not (hi j = 0). The resulting 2D abstraction is
generated by maximizing the objective function as follows:

f (ci ’s,hi j ’s) = wn fn (ci ’s,hi j ’s) +wc fc (ci ’s) +wb fb (ci ’s), (1)

where three energy terms fn , fc , and fb represent respectively
neighbor energy, consistency energy, and background energy, with
weightswn ,wc , andwb used to control the relative influence. Each
of these enery terms is tailored to realizing the design principles
discussed in Section 3. We now elaborate each enery term in details.

Neighbor energy. This energy term highlights the feature and
spatial relation between neighboring patches, and is defined on
every adjacent node triplet (Pi ,Bi j , Pj ) from Gp , where Pi , Pj ∈ Np ,
Bi j ∈ Nb and E

i j
i ,E

j
i j ∈ Ea . For each triplet (Pi ,Bi j , Pj ), different

abstraction layouts can be generated according to the values as-
signed to ci , hi j , and c j . We further classify the triplet layouts into
four types according to layout characteristics, including ‘merge’,
‘contrast’, ‘halo’, and ‘invalid’. The last type enables the halo effect
in the wrong context, i.e., when two neighboring patches are with
different colors. As a result, it is not favored by our optimization. The
other three types are suitable for different scenarios. The ‘contrast’
type layout is good for highlighting spatial inclusion between two
adjacent patches which are close in depth. The ‘halo’ type is effec-
tive to reflect the occlusion relation between two adjacent patches
with significant depth difference, since the halo effect highlights the
depth ordering. The ‘merge’ type is only preferred when patches
are small and the ‘contrast’ or ‘halo’ type cannot be realized due
to lack of space or recognition. Table 1 lists all possible layouts

Fig. 7. Examples of 2D patches (bottom) generated from 3D shapes (top).

Fig. 8. Input shape (left) with corresponding shape graph (middle) and patch
graph (right). Only a subset of graph nodes is shown for clarity. In shape
graph, undirected edges connect congruent parts. In patch graph, directed
edges either connect patch node and boundary node (through solid adja-
cency edges), or two patch nodes of which one encloses the other (through
dashed inclusion edges). The direction of the edge indicates occlusion and
inclusion relations.

Table 1. Possible labellings and corresponding layout types for a patch-
boundary-patch triplet. B=black, W=white, D=disable halo, E=enable halo.

Pi B W B W B W B W
Bi j D D D D E E E E
Pj B W W B B W W B

Type merge merge contrast contrast halo halo invalid invalid

and corresponding types. In the following, we define quantitative
measurements for scoring the quality of four layout types.

For ‘contrast’ type, the score is defined as follows:
scon (ci ,hi j , c j ) = ScaleContrast(Pi , Pj ) ∗ Relative(Pi , Pj )∗(

1 − d(Bi j )
)
∗ Inclusion(Pi , Pj ),

(2)

where ScaleContrast(Pi , Pj ) is an activation-type function which
only enables color contrast when patch width is large enough for the
patch to be recognized, Relative(Pi , Pj )measures how much Pi and
Pj are correlated, d(Bi j ) is the normalized depth difference at Bi j ,
and Inclusion(Pi , Pj ) reflects if Pj is enclosed by Pi . Note that due
to the involvement of the activation-type function, the constituent
functions in the quality score are combined via multiplication rather
than addition. This only allows color contrast if the patch size is
reasonable, a feature which cannot be easily realized using addition.
More specifically, the individual functions are defined as follows:

ScaleContrast(Pi , Pj ) = max
(
0, 1 −

Width

min
(
2D(Pi ), 2D(Pj )

) ) , (3)

whereWidth is the minimum recognizable patch width (5 pixels
in our implementation), D(Pi ) is the maximum distance transform
value within patch Pi , estimating patch width from patch boundary.

Relative(Pi , Pj ) = b(Pi , Pj ) ∗ min
(
a(Pi ),a(Pj )

)
, (4)

= < <

Fig. 9. Illustration of the relative score in Equation 4 for measuring the cor-
relation between two adjacent 2D patches (colored squares). It encourages
patches with large area and distinct shared boundary (red line) for better
visual recognition.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:6 • Lin, Yang, and Chu

where b(Pi , Pj ) is the normalized length of the shared boundary
between Pi and Pj , a(Pi ) is the normalized area of Pi , same for Pj . It
can be seen in Figure 9 that Pi and Pj are strongly correlated if they
can be easily recognized individually (i.e., with large patch area),
and they are in good contact (i.e., with long boundary length). Note
that similar measurements were also used in [Xu and Kaplan 2008].

Inclusion(Pi , Pj ) =

{
WI ,E

j
i ∈ Ei

1,E ji < Ei
(5)

This returnsWI if Pi and Pj are connected by an inclusion edge in
Gp , otherwise 1. We useWI = 1.5 in our implementation to further
encourage contrast for inclusion patches.
For ‘halo’ type, the score is defined as follows:

shalo (ci ,hi j , c j ) = ScaleHalo(Pi , Pj ) ∗Relative(Pi , Pj ) ∗d(Bi j ) (6)

where Relative(Pi , Pj ) and d(Bi j ) are the same as for ‘contrast’ type.
Similar to ScaleContrast , ScaleHalo(Pi , Pj ) is an activation-type
function that only allows halo effect with appropriate patch width,
which is defined as follows:

ScaleHalo(Pi , Pj ) = max
(
0, 1 −

Width

min
(
D(Pi ),D(Pj )

) ) . (7)

Unlike ScaleConstrast , here we use D(Pi ) instead of 2D(Pi ) to fur-
ther restrict the patch size. Since the halo region is created on the
occluded patch, both of them need to be visible in the final layout.
The last two types ‘merge’ and ‘invalid’ are simply defined as

constants:
smerдe (ci ,hi j , c j ) = 1e−8, (8)

and
sinvalid (ci ,hi j , c j ) = 0. (9)

Note that the ‘invalid’ case is unfavorable, and thus has no quality
score. The ‘merge’ case is favored when both ‘contrast’ and ‘halo’
are not activated; a small positive value is then returned.
The overall neighbor energy fn is defined by enumerating all

triplet scores in different cases as explained above:

fn (ci ’s,hi j ’s) =
∑

Ei ji ,E ji j ∈Ea

sn (ci ,hi j , c j ), (10)

where

sn (ci ,hi j , c j ) =


scon (ci ,hi j , c j ), case ‘contrast’
shalo (ci ,hi j , c j ), case ‘halo’

smerдe (ci ,hi j , c j ), case ‘merge’
sinvalid (ci ,hi j , c j ), case ‘invalid’

(11)

Consistency energy. This energy term encourages color consis-
tency between two patches Pm and Pn if their corresponding com-
ponents are the same or congruent. It is defined as follows:

fc (ci ’s) =
∑

im=in,Eimin ∈Es

XNOR(cm , cn )∗min(a(Pm ),a(Pn )), (12)

where im is the component ID of Pm , XNOR is the exclusive-nor op-
erator, anda(Pm ) is the area of patch Pm . Functionmin(a(Pm ),a(Pn ))
is used to weigh the influence according to patch size.

Fig. 10. Black-and-white abstraction layouts without (left) and with (right)
feature lines highlighted. Note that the asymmetry of the left layout (with
feature lines) is due to the fact that the input 3D model is not symmetric
(although it looks so without shading).

Background energy. This energy term encourages the color con-
trast between the background and the patches incident to the back-
ground. It is defined as follows:

fb (ci ’s) =
∑

Pk ∈N̄

XOR(ck , c̄) ∗ Relative(Pk , P̄), (13)

where N̄ is the set of graph nodes incident to background patch
P̄ , c̄ = 1 denotes white background color, XOR is the exclusive-or
operator, and Relative is the correlation function defined as before.

Optimization. We use belief propagation [Yedidia et al. 2003] to
maximize the objective function defined in Equation 1 and obtain
the optimal assignment of patch colors and halo effect labels. We
empirically setwn = 1.0,wc = 1.0,wb = 5.0 in all experiments.

6.1 Highlighting sharp features
The optimized abstraction layout primarily considers the geometric
and structural properties at an inter-component level. The intra-
component geometric properties (e.g., feature lines), except self-
occlusions, have yet to be considered. To better address this, we
extract sharp edges as prominent features for each mesh component
due to their effectiveness of representing man-made shapes [Gal
et al. 2009]. The sharp edges are defined as mesh edges shared by
triangles with acute dihedral angle (< 80◦). Then, we project sharp
edges to 2D and trace 2D line segments by a flooding algorithm. In
practice, we involve a feature line L into the final layout only if i)
it is salient, and ii) it does not affect the appearance of the existing
layout. The former criterion is modeled as Lenдth(L) >WF ∗Width,
where Lenдth(L) is the length of L, andWF weighs the saliency
and is fixed to 10 in our implementation. The latter is ensured by
enforcing D(PL) >Width, where PL is the patch where L locates.
This concept echoes that of the activation of halo features. Figure 10
presents a comparison between layouts with and without sharp
features highlighted.

6.2 Abstraction layout realization
Once we have estimated how to abstract patch nodes, boundary
nodes, and sharp features, we can now render the final abstraction
layout. First, we assign color to each patch Pi according to the opti-
mal color label ci , resulting in a black-and-white segment layout,
where each segment corresponds to a shape patch in the final lay-
out. Then we generate boundary patches on top of the initial shape

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.



Scale-aware Black-and-White Abstraction of 3D Shapes • 1:7

Fig. 11. Black-and-white abstractions generated at different scales (s = 0.7, 0.3, 0.1).

patches as follows. For each boundary node Bi j with binary label
hi j = 1, we extract the boundary between two neighboring patches
Pi and Pj . Then we use a disk-shaped mask with radiusWidth cen-
tered at each boundary pixel to sculpt a halo region (also a boundary
patch) on the occluded patch Pj based on boolean operation. It is
easy to see that the width of the halo region isWidth, which is the
same parameter indicating the minimum recognizable patch width
as used in the layout optimization. Boundary patches induced by
sharp feature lines are generated similarly. For a 2D feature line L,
we use a disk-shaped mask with radiusWidth/2 centered at each
pixel of L to sculpt a feature line region (also a boundary patch)
with width equal toWidth.

6.3 Scale-aware layout generation
Our layout optimization and generation algorithm is highly flexible.
It can be used to generate abstraction layouts at multiple scales,
where more detailed features are preserved at a large scale to better
depict the input shape, while only prominent features are kept at
a small scale to avoid visual cluttering and improve readability. By
default, the resolution of the projected 2D image is 1600 × 1200,
which corresponds to the largest scale. A straightforward approach
to generate layout at a smaller scale is to reduce 2D patch sizes by
increasing viewing distance of the input shape, and keep the same
Width in the optimization. However, it largely affects the quality
of patch segmentation in Section 5.2 and easily leads to errors in
segmentation results. This is because small triangle faces could
be eliminated due to rasterization when using a low-resolution
image. Instead, we propose computing all layouts in the highest
resolution by varyingWidth (from 5 to 35 in our implementation) in
the optimization. The final result is obtained by down-sampling the
optimized layout such that the minimum recognizable patch width is
still 5. To simplify the parameter setting, we leverage a scaling factor
0 ≤ s ≤ 1 for intuitive control. Specifically, s = 1 corresponds to the
largest scale withWidth = 5, while s = 0 implies the smallest scale
withWidth = 35, and s is linearly mapped toWidth for in-between
values. Figure 11 shows examples of abstraction layouts generated
at three different scales. Note that the result at the smaller scale is
not simply down-sampled from the large-scale result but optimized
separately. It is possible to increase theWidth value beyond 35 to

Fig. 12. User editing example. Given an input shape (left), the automated
result has different colors for two back mirrors (middle), as the reflective
symmetry between components is not considered in our framework. In this
context, the user can specify black color for the highlighted back mirror,
and our framework performs constrained optimization to generate the new
result (right).

produce even smaller abstractions. Its limit is restricted by the size
of the projected shape.

6.4 Optional user control
Although our algorithm runs automatically, our framework also
provides design freedom by allowing the user to specify color for
shape patches. The layout optimization adopts the user constraints
by fixing the corresponding color labels while optimizing the other
variables. A user editing example is shown in Figure 12.

7 RESULTS AND EVALUATION
We have tested our framework on a variety of man-made shapes
in different categories from [Chen et al. 2003]. Figure 13 shows a
gallery of automated abstraction results, which fulfill the design
principles and well represent the characteristics of the input shape.
Our framework is also capable of generating abstraction results at
different scales, where the level of details is adaptive to the spe-
cific scale, enabling good readability of the resulting abstraction
layout. In addition to Figure 11, more results can be found in the
supplementary material.

7.1 Performance
Our computational framework is integrated into a GUI application
using C++. All the experiments are conducted on a moderate ma-
chine with 3.80GHz CPU, 16GB memory, and NVIDIA GTX 1070
graphics card. The computational performance is mainly affected by

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:8 • Lin, Yang, and Chu

Fig. 13. Gallery of black-and-white abstractions generated by proposed framework on a variety of man-made shapes with scale s = 0.5.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.



Scale-aware Black-and-White Abstraction of 3D Shapes • 1:9

Fig. 14. Evaluation of energy terms: (left to right) input shape, results of including all energy terms, results of excluding neighbor term, results of excluding
consistency term, results of excluding background term.

(i) the number of triangles and components of the input 3D shape
due to congruence detection; and (ii) the number of patches that
are involved in layout optimization. The timing statistics over all
experiments exhibit an interactive performance, which ranges from
less than 0.5 second for shapes with thousands of triangles to close
to 1 second for the most complex shapes (rare cases). We also lever-
age the shader capability of modern GPU to further accelerate the
generation of halo and feature line region in Section 6.2.

7.2 Effectiveness of energy terms
In the layout optimization, we devise three energy terms to real-
ize our selected design principles. In this section, we evaluate the
effectiveness of each energy term by vanishing the corresponding
weighting coefficient (i.e.,wn ,wc , orwb ) during the optimization. A
visual comparison is shown in Figure 14. It can be seen that without
the neighbor term, the halo and hollow effects cannot be generated
to highlight the spatial relation between patches. Excluding the con-
sistency term can easily lead to an ambiguous layout with repetitive
components in opposite colors, causing trouble for understanding
correlations between patches. Lack of a background term is also
problematic since boundary patches are often confused with the
background of the same color. Optimization using all three energy
terms ensures high-quality results.

7.3 Comparison with baseline methods
We compare our abstraction results with three baseline methods that
also generates 2D binary representations from 3D shapes. Figure 15
(left) shows a comparison of different models. The first method (SC)
is based on suggestive contour [DeCarlo et al. 2003], a 3D surface-
based method that detects salient feature lines by analyzing surface
curvature. We simply compute a 2D projection of the whole shape
and assign black color to it, followed by overlaying white feature
lines from suggestive contours. Since suggestive contour depends
on surface curvature, it can be easily affected by the robustness of
the curvature estimation method. Although it works very well for
smooth surfaces with high mesh quality, man-made shapes with low
quality measurements (e.g., irregular triangle shape, spiky geometry,

seams and gaps) usually cause misplaced and scattered feature lines.
The second method (DoG) is carried out by rendering the normals
of an input 3D shape into an RGB normal map, based on which we
apply the differential of Gaussian image filter to extract feature lines.
Since it is an image-based method, the result is less sensitive to mesh
quality, and thus more robust than suggestive contours. However,
it has no halo and hollow features to support spatial and structural
inference. Inconsistent normal orientation due to flipped faces can
also cause problems. The third method (AMR) is artistic minimal
rendering [Rosin and Lai 2010] with two tones, which takes the
shaded image of the 3D shape as input. The result can be influenced
by different shading effects due to lighting conditions. And missing
geometric details can easily occur, especially at small scale when
the image resolution is low, since the method is not intrinsic to
shape geometry. We also conducted a user study to validate the
effectiveness of our method over three baselines as follows.

7.4 User study
Since the ultimate judgement of the quality of 2D abstraction lies in
human perception, we conducted a pilot user study via an anony-
mous online web survery with 100 participants to evaluate our ap-
proach over three baseline methods. The participants were mostly
academic students with computer science background.We randomly
picked 20 examples and presented to the participants the input 3D
shape along with results generated from different methods in ran-
dom order. The scale-awareness of our results was evaluated by
generating abstractions at two different scales (s = 0 and s = 1). The
results of other baseline methods are normalized to the same scale as
ours. For surface-based method (SC), we resized the 2D projection of
the 3D shape while keeping the width of the feature lines. For image
domain methods (DoG and AMR), we generated results at different
resolutions. During the trial, each participant was asked to select
the best result according to one of the following three questions
that respectively correspond to three visual metrics - ‘conciseness’,
‘recognizability’, and ‘representativeness’: Q-1: Which is the most
concise result that can help distinguish between shapes? Q-2: Which
is the most recognizable result at one glance? Q-3: Which is the most

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:10 • Lin, Yang, and Chu

0%

20%

40%

60%

80%

100%

Concise. Recog. Represent.

s=0 s=1 s=0 s=1 s=0 s=1

ours AMRDoGSC

Input shape Our result Suggestive contour (SC) Differential of Gaussian (DoG) Artistic minimum rendering (AMR)

Fig. 15. Comparison with baseline methods. (Left) Visual comparison of results respectively generated by our method, suggestive contour (SC), differential of
Gaussian (DoG), and artistic minimum rendering (AMR). (Right) User study statistics generated by evaluating quality of our results over baseline methods at
two different scales.

Fig. 16. An example involved in the user study that shows our result at
small scale (right, s = 0) is less preferred than the one at large scale (middle,
s = 1) due to the over-simplifcation of fine-grained features.

representative result with preferable appearance? Note that these
questions were asked separately and properly distributed among
participants to avoid bias.
The statistics of the user study are shown in Figure 15 (right).

Our results receive the most positive responses in ‘conciseness’ as
our goal is to generate concise 2D abstraction of 3D shapes. The
preference of our method declines slightly for ‘recognizability’ and
‘representativeness’ due to the simplification of feature lines. The
less preference of our result at small scale over large one is because
our method retains only the most prominent features at small scale
when comparing with other methods. Figure 16 shows an example
of such a ’less-favorable’ case. In general, our approach outperforms
other baseline methods at both scales by striking a good trade-off
between visual cluttering and over-simplification, resulting in a
concise abstraction while preserving shape features.

8 APPLICATIONS
In this section, we discuss two applications that benefit from our
black-and-white abstraction framework: flat vector graphics design
and thumbnail image compression.

8.1 Flat vector graphics design
By fulfilling the design principles, our black-and-white abstraction
is particularly suited to flat vector graphics design. As shown in Fig-
ure 17, through the use of Potrace [Selinger 2003] or Image Trace in
Adobe Illustrator, our result can be effectively converted to its vec-
torized counterpart with less geometric complexity (e.g., number of
anchors) than the other method. This facilitates the design process
and serves as a good starting point for further edits by designers in
the creation of icons [Bernstein and Li 2015], pictograms [Abdul-
lah and Hüber 2006], and flat vector graphics in general. Note that
besides geometric elements, the designers also rely on conceptual
elements to better infer the functionality of the design. As shown
in Figure 2, a thunder shape is added to the big chimney to indicate
that it is used for generating electric power. Computational genera-
tion of such conceptual elements is beyond the scope of the present
work.

Fig. 17. Proposed black-and-white abstraction can be effectively converted
to vector graphics format (left). The other two results are vectorized versions
of the same DoG image with different geometric complexity defined by
the amount of anchors. We can see that our result requires much less
geometric components (i.e., 800 anchors) to represent the original shape
when comparing to the middle one (2800 anchors) and is superior than the
right one (1600 anchors) in perserving the prominent features.

8.2 Thumbnail image compression
In many online 3D model databases (e.g., https://free3d.com/), a
shaded thumbnail image in full color is used for assisting the user
to navigate the database. These thumbnail images often require
relatively high resolution in image space and colour spaces. Al-
though this might suit contexts such as categorized websites, the

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.

https://free3d.com/


Scale-aware Black-and-White Abstraction of 3D Shapes • 1:11

network and memory cost of visualizing a large database would be
too high. Our abstraction result can be encoded in a compressed
8-bit gray-scale image or a vector graphics format. As a result, net-
work bandwidth and disk space can be largely saved (up to 91%
according to our test) with moderate trade-off for details.

9 DISCUSSION
In this paper, we present a computational framework for the au-
tomatic generation of 2D black-and-white abstractions from 3D
man-made shapes at multiple scales. We identify a set of relevant
design principles to help formulate the problem, and devise a set
of shape analysis and optimization algorithms conforming to these
design principles. We demonstrate the proposed framework on a
variety of man-made shapes, and evaluate the results through ex-
tensive comparison with baseline methods in a pilot user study.
Experimental results show that our black-and-white abstraction
presents a concise representation of the input shape, and well pre-
serves its geometric and structural information in 3D at differing
levels of detail. Further, we apply our abstraction results to two
application scenarios to showcase its practical value.

Limitations. While our framework is robust to shapes with low
mesh quality measurements, such as irregular sampling and triangu-
lation, models with poor connectivity due to many duplicated mesh
vertices and/or fragmented components can be problematic in the
extraction of shape patches in 2D. Mesh repair algorithms and user
interactions could be applied at a pre-processing stage to improve
mesh connectivity. Another limitation is that our framework mainly
focuses on man-made shapes with multiple components but not
organic shapes with continuous geometry (e.g., the Stanford bunny).
To adopt such shapes into our framework, existing techniques in
geometry processing field such as feature extraction and mesh seg-
mentation can be applied to analyze the geometric and structural
properties.

Future work. To improve the semantics of abstractions at multiple
scales, we would like to expand upon this work by exploring the
high-level structural properties, such as symmetry and hierarchy.
There also exists scope for further research into other flat design
styles. For example, a popular design style that emphasizes patch
boundaries over the patch itself. Some of the present patch-based
abstraction principles (e.g., halo, hollow) can also be useful therein.
Further, the current procedural optimization approach is devised
in an unsupervised manner. How to automatically learn design
patterns from existing examples would be an interesting avenue of
reasearch. Last but not least, we plan to utilize our results for other
applications that involve the 2D abstraction of 3D shapes, such as
paper cutting - a characteristic 2D form that mimicks real objects in
3D. In this case, additional physical constraints such as connectivity
between patches need to be considered.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their comments
and suggestions. We also thank all the anonymous users for par-
ticipating the user study. The work was supported in part by the
Ministry of Science and Technology of Taiwan (106-3114-E-007-008
and 105-2221-E-007-104-MY2), and CAMERA, the RCUK Centre for

the Analysis of Motion, Entertainment Research and Applications,
EP/M023281/1.

REFERENCES
RayanAbdullah and RogerHüber. 2006. Pictograms, Icons & Signs: AGuide to Information

Graphics. Thames and Hudson Ltd.
Arthur Appel, F. James Rohlf, and Arthur J. Stein. 1979. The Haloed Line Effect for

Hidden Line Elimination.. In Proceedings of the 6th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’79). 151–157.

Henk Bekker, Jos B.T.M. Roerdink, Tobias Isenberg, and Maarten H. Everts. 2009. Depth-
Dependent Halos: Illustrative Rendering of Dense Line Data. IEEE Transactions on
Visualization and Computer Graphics 15 (2009), 1299–1306.

Gilbert Louis Bernstein and Wilmot Li. 2015. Lillicon: Using Transient Widgets to
Create Scale Variations of Icons. ACM Trans. Graph. 34, 4 (2015), 144:1–144:11.

Stefan Bruckner and Eduard Gröller. 2007. Enhancing Depth-Perception with Flexible
Volumetric Halos. IEEE Transactions on Visualization and Computer Graphics 13, 6
(2007), 1344–1351.

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003. On Visual
Similarity Based 3DModel Retrieval. Computer Graphics Forum 22, 3 (2003), 223–232.

Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stoddart Barros, Adam
Finkelstein, Thomas Funkhouser, and Szymon Rusinkiewicz. 2008. Where Do People
Draw Lines? ACM Trans. Graph. 27, 3 (2008), 88:1–88:11.

Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella. 2003.
Suggestive Contours for Conveying Shape. ACM Trans. Graph. 22, 3 (2003), 848–855.

Elmar Eisemann, Sylvain Paris, and Frédo Durand. 2009. A Visibility Algorithm for
Converting 3D Meshes into Editable 2D Vector Graphics. ACM Trans. Graph. 28, 3
(2009), 83:1–83:8.

Gershon Elber. 1995. Line illustrations is computer graphics. The Visual Computer 11,
6 (1995), 290–296.

Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. 2009. iWIRES: An Analyze-
and-edit Approach to Shape Manipulation. ACM Trans. Graph. 28, 3 (2009), 33:1–
33:10.

Aaron Hertzmann and Denis Zorin. 2000. Illustrating Smooth Surfaces. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’00). 517–526.

Tilke Judd, FrédoDurand, and Edward Adelson. 2007. Apparent Ridges for Line Drawing.
ACM Trans. Graph. 26, 3 (2007).

Alexander Kolliopoulos, Jack M. Wang, and Aaron Hertzmann. 2006. Segmentation-
based 3D Artistic Rendering. In Proceedings of the 17th Eurographics Conference on
Rendering Techniques (EGSR ’06). 361–370.

Hua Li and David Mould. 2015. Contrast-Enhanced Black and White Images. Comput.
Graph. Forum 34, 7 (2015), 319–328.

Yiming Liu, AseemAgarwala, Jingwan Lu, and Szymon Rusinkiewicz. 2016. Data-driven
Iconification. In Proceedings of the Joint Symposium on Computational Aesthetics
and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and
Rendering (Expresive ’16). 113–124.

Thomas Luft, Carsten Colditz, and Oliver Deussen. 2006. Image Enhancement by
Unsharp Masking the Depth Buffer. ACM Trans. Graph. 25, 3 (2006), 1206–1213.

Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and Niloy J.
Mitra. 2009. Abstraction of Man-made Shapes. ACM Trans. Graph. 28, 5 (2009),
137:1–137:10.

Tom Page. 2014. Skeuomorphism or Flat Design: Future Directions in Mobile Device
User Interface UI Design Education. Int. J. Mob. Learn. Organ. 8, 2 (2014), 130–142.

Paul L. Rosin and Yu-Kun Lai. 2010. Towards Artistic Minimal Rendering. In Proceedings
of the 8th International Symposium on Non-Photorealistic Animation and Rendering
(NPAR ’10). 119–127.

Szymon Rusinkiewicz, Forrester Cole, Doug DeCarlo, and Adam Finkelstein. 2008.
Line Drawings from 3D Models. In ACM SIGGRAPH 2008 Classes (SIGGRAPH ’08).
39:1–39:356.

Peter Selinger. 2003. Potrace: a polygon-based tracing algorithm. In In
http://potrace.sourceforge.net.

Ariel Shamir. 2008. A survey on Mesh Segmentation Techniques. Computer Graphics
Forum 27, 6 (2008), 1539–1556.

Jie Xu and Craig S. Kaplan. 2008. Artistic Thresholding. In Proceedings of the 6th
International Symposium on Non-photorealistic Animation and Rendering (NPAR ’08).
39–47.

Yong-Liang Yang, Jun Wang, and Niloy J. Mitra. 2015. Reforming Shapes for Material-
aware Fabrication. Comput. Graph. Forum 34, 5 (2015), 53–64.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. 2003. Exploring Artificial
Intelligence in the New Millennium. Chapter Understanding Belief Propagation
and Its Generalizations, 239–269.

Mehmet Ersin Yumer and Levent Burak Kara. 2012. Co-abstraction of Shape Collections.
ACM Trans. Graph. 31, 6 (2012), 166:1–166:11.

ACM Trans. Graph., Vol. 37, No. 4, Article 1. Publication date: August 2018.


