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Fig. 1. We present an algorithm that takes line drawing images and the spatial arrangement of viewpoints as inputs and produces 3D wire sculpture art
showing distinct interpretations when viewed at different angles. The generated 3D wire sculptures can be used to cast distinct shadows onto three mutually
orthogonal planes (left), create different poses of an animated cartoon characters (middle), or exhibit two concepts at the same time, e.g., texts v.s. logo (right).
The 3D wire art can be appreciated either with light sources casting shadows onto external planar surfaces or directly viewing from certain viewpoints.

Wire art is the creation of three-dimensional sculptural art using wire strands.
As the 2D projection of a 3D wire sculpture forms line drawing patterns,
it is possible to craft multi-view wire sculpture art — a static sculpture
with multiple (potentially very different) interpretations when perceived
at different viewpoints. Artists can effectively leverage this characteristic
and produce compelling artistic effects. However, the creation of such multi-
view wire sculpture is extremely time-consuming even by highly skilled
artists. In this paper, we present a computational framework for automatic
creation of multi-view 3D wire sculpture. Our system takes two or three
user-specified line drawings and the associated viewpoints as inputs. We
start with producing a sparse set of voxels via greedy selection approach
such that their projections on the virtual cameras cover all the contour
pixels of the input line drawings. The sparse set of voxels, however, do not
necessary form one single connected component.We introduce a constrained
3D pathfinding algorithm to link isolated groups of voxels into a connected
component while maintaining the similarity between the projected voxels
and the line drawings. Using the reconstructed visual hull, we extract a
curve skeleton and produce a collection of smooth 3D curves by fitting
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cubic splines and optimizing the curve deformation to best approximate the
provided line drawings. We demonstrate the effectiveness of our system for
creating compelling multi-view wire sculptures in both simulation and 3D
physical printouts.
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1 INTRODUCTION
Wire sculpture is a unique art form that creates complex objects out
of wire. The use of wire as a medium for sculpturing has been widely
applied to furniture design [Postell 2012], crafting wire wrapped jew-
elry [Iarussi et al. 2015; WigJig 2015], and wire sculptural art [2007].
Very recently, French artist Matthieu Robert-Ortis has created com-
pelling wire sculptures that exhibit two distinct image interpreta-
tions when viewed at different perspectives. Figure 2 presents two
examples of multi-view wire sculpture art. 1
Similar to shadow art, multi-view wire art allows us to create

objects with multiple interpretable line drawings at different view-
points. Furthermore, wire art offers additional flexibility in that the
1More examples can be found at http://cargocollective.com/matthieu-robert-ortis/
En-video
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First view Int. view Second view

Fig. 2. Example of multi-view wire sculpture art. The anamorphose
sculpture created by the French sculptor Matthieu Robert-Ortis is a clas-
sic example of multi-view wire art. When viewing from one specific angle,
we perceive a drawing of an elephant. When viewing from another view
point, the interpretation changes into two giraffes. The 2D projection in the
intermediate view does not produce an interpretable image.

wire sculpture does not require a light source for casting shadows
to see the hidden images. It is thus of great interests for enabling
designers and hobbyists to create multi-view wire art. However,
designing and creating multi-view wire art is prohibitively difficult
for novice users due to the required artistic skills and significant
efforts in resolving conflicting contour constraints from two or more
line drawings.

Our work. We present a system for enabling users to create the
desired multi-view wire art sculpture. As shown in Figure 1, our
system takes two or three line drawing images and the associated
viewpoints provided by the user as inputs and produce the 3D wire
sculpture that forms the user-specified line drawings at different
viewpoints. This problem is challenging because the wire struc-
ture satisfying all constraints by input line drawings often does
not exist (see Figure 3). To tackle the challenge, we develop tools
for constructing the sculpture by balancing the smoothness of the
curves and the similarity between the specified line drawing and
the projection at multiple viewpoints.

Specifically, our approach consists of two main stages: (1) visual
hull reconstruction, (2) 3D curve skeleton extraction and defor-
mation. In the first stage, we use a greedy selection approach to
generate a collection of voxels covering all the contour pixels of
the input line drawings and introduce a constrained 3D pathfind-
ing algorithm to link the resulting isolated components into one
single connected component that represents the final visual hull.
Second, based on the reconstructed visual hull, we extract a 3D curve
skeleton by exploiting a novel quality measurement that captures
projection errors and structural complexity of the curve skeleton.
We then fit individual skeleton lines using cubic splines and perform
image-guided curve deformation to improve the projection error
with respect to the input line drawings. Although our algorithm runs
automatically, we provide interactive tools that enable interactive
editing for users to repair or simplify the generated wire sculpture
using 2D strokes. We demonstrate the effectiveness of our system
on a wide variety of different line drawings. Numerous results show
that the proposed method can produce multi-view wire sculptures
with small distortions in the projected views.

Inputs Triple-consistent Pairwise-consistent

Fig. 3. Conflicting silhouette constraints. (Left) Three input line draw-
ings. (Middle) When constructing the visual hulls using the three input
silhouettes at mutually orthogonal viewpoints, selecting voxels by intersect-
ing the generalized cones from all three views (i.e., triplet-consistent) only
produces very sparse points at the projected view. (Right) Keeping voxels
that are consistent with at least a pair of views (i.e., pairwise-consistent)
helps increase the coverage of the desired line contour, but yield unrecog-
nizable image due to conflicting constraints.

Our contributions. (1) A system for the automatic creation ofmulti-
view wire sculpture art using only user-specified 2D line drawings
and the associated viewpoints. Our system is capable of generating
complex wire sculptures that are extremely difficult to design and
implement manually (e.g., three views); (2) A suite of computational
techniques tailored to resolving conflicting constraints from multi-
ple views while maintaining similarity between the projections and
the input line drawings; (3) A characterization of quality over voxel
resolution and the interval of viewing directions.

2 RELATED WORK
3D reconstruction. Our problem builds upon the concepts and

techniques in 3D reconstruction from multiple 2D image observa-
tions. Structure-from-motion (SfM) [Schonberger and Frahm 2016;
Snavely et al. 2006] and multi-view stereo (MVS) [Collins 1996; Fu-
rukawa and Ponce 2010; Goesele et al. 2007; Huang et al. 2018; Kuhn
et al. 2017; Schönberger et al. 2016] algorithms are capable of recon-
structing detailed 3D models in unconstrained settings (e.g., photos
from the Internet). We refer the readers to [Furukawa and Hernán-
dez 2015] for a comprehensive overview of MVS algorithms. These
methods, however, rely on establishing point correspondence across
images and therefore have difficulty in handling smooth regions
or thin wire structures. In light of this, several recent approaches
exploit higher order features such as lines or curves as primitives
for 3D reconstruction [Fabbri and Kimia 2010; Hofer et al. 2017;
Liu et al. 2017; Usumezbas et al. 2016]. Assuming clean foreground-
background separation, visual hull and silhouette intersection based
algorithms can be also applied to construct 3D models from im-
age observations [Laurentini 1994; Lazebnik et al. 2007; Matusik
et al. 2000; Szeliski 1993] or from user-specified sketchs [Olsen et al.
2009; Rivers et al. 2010]. Similar to visual hull based algorithms, our
method also uses multiple silhouettes (from user-specified line draw-
ings) as inputs to construct a 3D model of a wire sculpture where
its projections match with the input silhouettes as much as possible.
The difference lies in that our input silhouettes may conflict with
each other (see an example in Figure 3) and produce many isolated
components in the visual hull, causing difficulty in manufacturing
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(a) Inputs (b) Discrete visual hull (c) Connected visual hull (d) Extracted curve skeleton (e) Final wire sculpture

Section 4.1 Section 4.2 Section 5.2 Section 5.3

Fig. 4. Method overview. Given three input line drawing images (a), our system starts with reconstructing a discrete visual hull (b) through intersecting
generalized cones formed by back-projecting the 2D image to 3D using the associated camera parameters (mutually orthogonal viewpoints in this example).
We then integrate the isolated components (green voxels) into a connected visual hull (c) via a 3D pathfinding method that jointly analyzes the spatial
relations between components in 3D and their 2D counterparts. The traced 3D pathes are represented by blue voxels. Next, we apply a volumetric thinning
algorithm [Liu et al. 2010] to extract a curve skeleton from the reconstructed visual hull, followed by a structure simplification process that grounds a
tailor-made quality measurement to strike a balance between i) the projection error and ii) the structure compactness of resulting curve skeleton (d). Lastly,
we fit the individual skeleton lines (colored line segments) with cubic splines and employ an image-guided 3D curve deformation to obtain the final smooth,
continuous, and compact 3D wire sculpture (e). (Top row) The projections of intermediate products using associated camera parameters.

a physical wire sculpture. Our work focuses on resolving the incon-
sistency and constructing a collection of smooth, continuous curve
skeletons while minimizing the distortion between the projected
views and the input line drawings.

Multiple interpretations from an object. Our work on creating
multi-view wire art is related to several approaches for producing
multiple visual interpretations from a single object. The perception
of a static object (e.g., image, relief, sculpture) can vary dramatically
depending on viewing distances [Oliva et al. 2006], figure-ground
organization [Kuo et al. 2016], illumination from a certain direc-
tion [Alexa and Matusik 2010; Bermano et al. 2012], viewing direc-
tions [Keiren et al. 2009; Sela and Elber 2007], or casting shadows
onto external planar surfaces [Min et al. 2017; Mitra and Pauly 2009].
Won and Lee [2016] further extended the idea to create shadow the-
atre from dynamic objects (i.e., animated characters). Our work
differs in that we use 3D wire as a medium, allowing us to exhibit a
clear prescribed line drawing either from certain viewing directions
or cast shadows on planar surfaces using a point light source.

Wire sculpture design and modeling. More recently, there is a line
of works devoted to modeling and fabricating the wire sculptures of
a specific form. Iarussi et al. [2015] presented a computational frame-
work to assist the creation of wire wrapped jewelry. Liu et al. [2017]
extended the dimension from 2D to 3D modeling of wire sculptures
using only a few input images of physical objects. Miguel et al. [2016]
proposed a computer-aided tool to facilitate converting a 3D model
into a stable, self-supporting wire sculpture that is fabricatable with
a 2D wire bending machine. Similarly, Zehnder et al. [2016] devel-
oped a computational design tool, targeting for the fabrication of
ornamental curve networks defined on the 3D surfaces. Our work

also falls into the category of 3D wire design and modeling but
targets fundamentally different context.

3 METHOD OVERVIEW
Our system takes input as a set of 2D line drawing images (or simply
images), I = {I1, ..., In }, along with the associated camera parame-
ters specified by an user (i.e., pose, and perspective or orthogonal
projection), P = {P1, ..., Pn }, where n = {2, 3} views in our experi-
ments. Our goal is to reconstruct a set of 3D curves C = {C1, ...,Ck }
represented by cubic splines. These curves together form a smooth,
continuous, and compact 3D wire sculpture, which while seemingly
irregular in both its geometry and structure, can precisely interpret
the input images when viewed or cast shadows from the specified
viewpoints. Figure 4 presents an overview of our system.

Pre-processing. For each input image, Ik , we first apply a simple
thresholding and thinning algorithm to extract a set of one-pixel
wide 2D curve lines. We represent these foreground pixels of Ik
as a graph Gk = {Vk ,Ek }, where Vk are pixels along the curve
lines and Ek encode their connectivities. If the graph Gk contains
multiple connected components, we further add edges to connect
them according to their spatial proximity and use a conventional
minimum spanning tree algorithm to get a connected graph.

Given the preprocessed input images, our system starts by back-
projecting the foreground pixels to the 3D domain using the asso-
ciated camera parameters to form a set of generalized cones [Lau-
rentini 1994]. We then discretize the space into volumetric grids (or
voxels) and find a minimum set of voxels such that the foreground
pixels in each view can be completely covered by the projections of
voxels. Applying a flooding algorithm produces a discrete visual hull,
which often contains an excessive amount of isolated components
in our context (Figure 4(b), Section 4.1). To integrate these isolated
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components into one connected component, we first connect two
proximate components via a 3D pathfinding method that jointly
analyzes the spatial relations between two components in 3D and
their 2D counterparts. Then we solve a binary labeling problem
that retains necessary links to form a connected visual hull while
minimizing the projection error due to the additional inconsistent
voxels from the links (Figure 4(c), Section 4.2).

Here, the reconstructed visual hull represents a well-defined space
in 3D where the curves of final wire sculpture would lie in. We first
adopt a state-of-the-art volumetric thinning algorithm [Liu et al.
2010] to effectively compute a shape- and topology-preserving curve
skeleton from the reconstructed visual hull. However, the extracted
curve skeleton is typically complex in geometry, contains numerous
redundant parts, and thus requires further refinement to be phys-
ically realizable (e.g., 3D printing). To this end, we devise a novel
quality measurement tailored for wire modeling (Section 5.1) by it-
eratively removing the constituent skeleton lines to strike a balance
between projection error and structure compactness (Figure 4(d),
Section 5.2). Finally, we obtain a smooth, continuous, and compact
3D wire sculpture by fitting individual skeleton lines with paramet-
ric cubic splines, followed by an image-guided curve deformation
to improve the projection accuracy with respect to the input images
(Figure 4(e), Section 5.3).

4 VISUAL HULL RECONSTRUCTION
Reconstructing a 3D wire sculpture from multiple reference 2D
images is related to shadow art [Mitra and Pauly 2009] as well as
shape-from-silhouette applications [Laurentini 1994]. In this section,
we describe a common step shared by existing works to reconstruct
a 3D visual hull— a set of voxels whose projections best approximate
the reference images using the associated camera parameters. With
the reconstructed visual hull, we can then extract a compact wire
sculpture with smooth, continuous 3D curves. Specifically, we aim to
reconstruct the visual hull meeting the following two requirements:
(1) Completeness: all the foreground pixels in the reference line
drawings should be covered by the projections of the visual hull
(Section 4.1); (2) Connectivity: the constituent voxels of the visual
hull must form a connected component (Section 4.2).

4.1 Discrete Visual Hull Generation
Given a set of reference images, denoted as {Gk , Pk |k = 1 ∼ n}, our
system starts by back-projecting the 2D image, Gk = {Vk ,Ek }, to
3D using the camera projection parameters, Pk , and generating a set
of generalized cones. To find a 3D volume that is compatible withGk
and Pk , we compute a bounding cube based on the intersection of
camera’s viewing frustums.We then discretize the cubic volume into
N × N × N uniform voxels xi ∈ R3 with N indicates the resolution
of voxelization. We define the relations between voxels and the
reference images as follows. Let x̃ki ∈ R2 be the 2D projection of ith

voxel xi with respect to projection Pk for the kth view. We label a
image pixel pk ∈ Vk as complete if it falls within one of the circles
(with a radius of 2 pixels) centered at x̃ki . We call a voxel consistent
if it can establish the mapping (x̃ki ,Vk ) for all k views.
The reconstruction process starts by initializing the visual hull

with a set of consistent voxels. Not surprisingly, the projection of

Initial visual hull Expanded visual hull

Fig. 5. Initial vs. expanded visual hull. Given the same inputs as in Fig-
ure 3, (Left) the initial visual hull with only triple-consistent voxels produces
sparse structure and incomplete projection. (Right) Exanding the initial
visual hull with voxels that are aware of both i) projection error and ii)
spatial compactness leads to a projection covering complete image contours
without introducing severe artifacts.

these voxels leads to highly incomplete images due to the incon-
sistency between the reference images (Figure 5(left)). Mitra and
Pauly [2009] tackle the inconsistency problem by a global optimiza-
tion that deforms the reference images. While such a deformation
framework performs well for solid shapes, it becomes ill-posed for
line drawing images that contain many hollow regions formed by
thin and complex line structures. We propose a simple yet effective
approach to further expand visual hull with voxels that are aware of
both i) projection error in 2D and ii) spatial compactness in 3D. For
each of the incomplete pixel pk ∈ Vk , we can find a ray of voxels
that map to pk . To favor voxels that have small projection errors
and are spatially close to the target visual hull, we define the cost
of the ith voxel xi as follows:

n∑
k=1

Dk (x̃
k
i ) + (1 −

∑
x j ∈Nxi

Dprox(xi ,x j )), (1)

where Dk is a distance transform map that measures the projection
error with respect to imageGk . The term Nxi contains the voxels in
the visual hull as well as 12 × 12 × 12 neighboring voxels to xi . The
functionDprox(xi ,x j ) computes the proximity between voxels using
a normalized Gaussian kernel with µ = xi and σ = 2. Then, we
employ a greedy algorithm that expands the visual hull by selecting
the least-cost voxel for each incomplete pixel pk and repeats the
process until all the pixels in Vk are labeled as complete. As shown
in Figure 5(right), this process results in a discrete visual hull that
fulfills the completeness requirement. We include the pseudocode
that details the above procedure in the supplementary document.

4.2 Connectivity Optimization
The discrete visual hull typically contains an excessive amount of
isolated components. These isolated components significantly in-
crease the difficulty in manufacturing a physical wire sculpture.
Therefore, our goal in this step is to find an optimal set of 3D paths
such that the isolated components are linked to form a single con-
nected component while minimizing the projection error caused
by inconsistent voxels that compose the 3D paths. We formulate
the problem as a conventional minimum spanning tree problem
on a graph representing the isolated components and their spatial
relationships.
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Components Constraint volume 3D pathfinding

Fig. 6. Constrained 3D pathfinding. (Left) Given two components in 3D
(red and purple voxels), we first find their 2D conterparts in each view.
(Middle) We then back-project the 2D shortest paths along the line contours
in the projected views (blue pixels) and construct a constraint volume by
taking the union of the generalized cones. (Right) 3D pathfinding algorithm
traces a sequence of voxels (blue voxels) to connect the two components.

Graph construction. First, we apply a flooding algorithm to con-
stituent voxels of discrete visual hull and generate a collection of
isolated components, denoted as X = {X1, ...,Xm }. Next, we con-
struct a component graph G = {X, E} by adding a graph edge ei j to
E if the shortest distance between two components Xi and X j is be-
low a pre-defined threshold (15% of the edge length of the bounding
cube in our experiments). For each graph edge ei j , we employ the
A∗ pathfinding algorithm with best-first-search strategy to trace a
3D path from Xi to X j . Two voxels, xsrc ∈ Xi and xdst ∈ X j , which
define the shortest distance between Xi and X j , represent respec-
tively the source and destination for 3D pathfinding. We define a
heuristic function for guiding pathfinding as follows:

h(xi ) =
n∑

k=1
Dk (x̃

k
i ) + 0.6∥xi − xdst∥

2
2 . (2)

The first term encourages selecting a voxel with smallest projection
error, while the second term regularizes the tracing direction toward
the destination voxel xdst. The resulting 3D path, composed of voxels
that connect the two components Xi and X j , is denoted as Pi j .

Constrained 3D pathfinding. Note that a greedy pathfinding al-
gorithm that freely explores the volume space is computationally
expensive. Here, we exploit the mapping between the target visual
hull and the input images to construct a volumetric manifold to
which the searching space is restrained while maintaining the pro-
jection quality. Specifically, given a pair of components {Xi ,X j } and
corresponding projections {X̃k

i , X̃
k
j } by Pk , we compute a 2D short-

est path from X̃k
i to X̃k

j on thek-th input imageGk , and back-project
pixels in the shortest path to obtain a constraint volume, denoted
as Hk

i, j . We define the constraint volume as Hi, j =
⋃
k=1∼n H

k
i, j ,

where n is the number of input images. Intuitively, as the constraint
volume Hk

i, j has projections along the contour on k
th image, tracing

path within the constraint volume thus does not incur additional
projection errors while pruning out a large portion of the volume
space. We modify the pathfinding algorithm to consider only voxels
in Hi, j when connecting components Xi and X j and hence obtain
a significant boost in timing (Section 7.2). Figure 6 illustrates the
proposed constrained 3D pathfinding approach.

Visual hull proj. Thinning w/o Dcont Thinning w/ Dcont

Fig. 7. Continuity penalty. (Left) Projection from the reconstructed visual
hull. (middle) Applying volumetric thinning algorithm on the visual hull may
result in broken line segments. (Right) Incorporate the continuity panelty
Dcont in the edge weights wi j help alleviate endpoints shrinkage artifacts.

Shape-aware edge weight. We define the edge weightwi j in the
component graph as follows:

wi j =
1

|Pi j |

∑
∀xi ∈Pi j

n∑
k=1

Dk (x̃
k
i ) + Dcont(Xi ,X j ). (3)

Intuitively, the first termmeasures the projection error induced from
path Pi j with respect to the input images. Here, we introduce the
continuity penalty term, Dcont(Xi ,X j ), to avoid endpoints shrinkage
effects due to volumetric thinning as follows:

Dcont(Xi ,X j ) =

{
0, ∃k, s.t. X̃k

i ∩ X̃k
i , ∅

10, otherwise , (4)

Dcont(Xi ,X j ) captures whether the 2D projections of two disjoint
components Xi and X j form a continuous line segment in the pro-
jective views. If so, we want to ensure a path connecting two such
components. This is achieved by adding a large constant value (10
in Equation 4) to those components that do not present such a
relationship. Figure 7 shows the effect of this penalty term.

Optimization. We apply Kruskal’s algorithm to the component
graph G and obtain a minimum weight spanning tree. The final
visual hull corresponds to the voxels that compose the resulting
spanning tree.

5 3D CURVE EXTRACTION
In this section, we describe our method for extracting smooth and
continuous 3D curves from the reconstructed visual hull. To this
end, we first employ a volumetric thinning method [Liu et al. 2010]
to extract a shape- and topology-preserving curve skeleton from the
visual hull. This curve skeleton is then divided into a set of skeleton
lines according to its topology. However, as the process of visual hull
reconstruction is performed locally and does not take into account
the compactness of global structure, the extracted curve skeletons
may contain many redundant parts with complex geometry. This
makes the physical realization process (e.g., 3D printing) extremely
challenging, or not even possible. To tackle this problem, we perform
a structure simplification on the curve skeleton that grounds on a
novel quality measurement tailor-made for our context to strike a
balance between projection error and structure compactness.
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Curve skeleton Naïve curve fitting Curve deformation

Fig. 8. Effect of image-guided 3D curve deformation. Given the ex-
tracted curve skeleton (left), using Naïve curve fitting may produce para-
metric curves that do not respect the given contours at the projected views
(middle). The proposed image-guided 3D curve deformation step help reduce
the distortion (right).

5.1 Quality Measurement
Given a curve skeleton denoted as L = {L1, ...,Lm }, where Li rep-
resents the skeleton line that is composed of a sequence of skeleton
points in 3D. We propose to measure the quality of L as:

Equality(L) = Eproj(L) + αEstruct(L), (5)

where Eproj and Estruct measure the bidirectional projection error and
structure compactness of L, respectively and the parameter α is used
to control the relative weights between the two energy terms.

Bidirectional projection error. The bidirectional projection error
aims to measure the shape similarity between the curve skeleton
and input image in the projected view. Specifically, we propose to
estimate (i) the deviation, indicating how much the projection of
curve skeleton deviates from the input image; and (ii) the incom-
pleteness, indicating how much portion of the input image is not
recovered by the projection of curve skeleton. Note that we render
the skeleton lines on the projected view using a circle shape with
radius of 1 pixel width. We denote the foreground pixels of input
image as Vk and projection of curve skeleton as L̃k . The projection
error Eproj is of the form:

Eproj(L) =
n∑

k=1
Edev(L̃k ,Vk ) +wkEincomp(L̃k ,Vk ), (6)

with

Edev(L̃k ,Vk ) =
1

|L̃k |

∑

∀pk ∈L̃k

Dk (pk ), (7)

and

Eincomp(L̃k ,Vk ) =
1

|Vk |
∑

∀pk ∈Vk
D L̃k

(pk ). (8)

Two functions, Dk and D L̃k
, represent the distance transform maps

computed by input Vk and the projected imageL̃k , respectively.
The parameterwk controls the relative importance between energy
functions with respect to each input image, and can be utilized to
support flexible user controls (Section 6).

(a) Input skeleton (b) User-defined strokes (c) Updated result

Before repair After repair Before simplify After simplify

Fig. 9. User editing example. (a) The automatic structure simplification
stepmay produce over-simplified skeleton (purple box) and under-simplified
(light blue box) result. (b) The user can locally alter the result by specifying
either repair strokes or simplify strokes on a particular input shape. (c) Given
the user inputs, our system automatically updates the structure of associ-
ated skeleton lines to obtain a new result that respects user’s intention at
interative rate (see supplementary material for examples).

Structure compactness. The structure compactness energy term,
on the other hand, aims to capture the complexity of curve skeleton
in terms of its 3D structure and 2D counterparts in the projected
views. We define the energy function as:

Estruct(L) = Eredundancy(L) + βEcomplexity(L). (9)

The first term Eredundancy measures the redundancy of mapping
from curve skeleton to input images by counting how many points
on the skeleton line Li ∈ L map to the same foreground pixel pk ∈
Vk . The second energy function Ecomplex(L) counts the number
of skeleton lines in L. The parameter β is used to trade off two
energy functions. We empirically set α = 0.4, β = 0.38, wk = 2 in
all experiments.

5.2 Curve Structure Simplification.
Given the definition of quality measurement on the curve skeleton,
our goal here is to determine a subset of skeleton lines L′ ⊂ L so
that we can minimize Equality(L′) while maintaining connectivity
of the selected subset L′. This amounts to a binary labeling problem
over a set of skeleton lines, and thus existing global optimization
methods are intractable.We implement a greedy approach to achieve
approximate local minimum by iteratively removing skeleton lines
using a priority queue. We leave the implementation details in the
supplementary document.

5.3 3D Curve Fitting and Deformation
Given the curve skeleton, we can easily obtain a smooth and con-
tinuous wire sculpture by fitting the individual skeleton lines with
parametric curve using cubic splines. However, a naïve curve fitting
often leads to irregular curve shapes inherited from the zigzag fea-
tures of reference skeleton lines (see Figure 8 (left, middle)). To avoid
these artifacts, we devise a curve deformation model that iteratively
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First view Int. view Second view

Fig. 10. Reproducing artist’s results. Using artist’s input of ele-
phant/giraffe in Figure 2, our results show visually similar 2D projections as
the input at both viewpoints. The intermediate view, however, reveals that
our 3D wire sculpture has more complex structure than that from the artist
(see Figure 2).

moves the control points on the curves toward the directions guided
by the spatial relations between projected control points and input
images. We show the effect of curve deformation in Figure 8 and
refer the readers to the supplementary material for details.

6 USER CONTROL
While our method can produce a 3D wire sculpture that best ap-
proximates the given line drawings at the specified view in fully
automatic fashion, the users may want to modify and refine the
sculpture to enhance artistic effects of the structure or fix errors
produced by our system. Here, we introduce two types of 2D strokes:
(i) repair strokes and (ii) simplify strokes to support interactive user
editing on the wire sculpture. The user simply needs to specify
2D strokes on the image of the wire sculpture projected onto the
k-th input image, while our system will automatically update the
local structure by (i) collecting skeleton lines that intersect with
user strokes in the projected view; and (ii) re-running the structure
simplification process on the selected skeleton lines with updated
parameters. For the repair strokes, we increase the parameter wk
in Equation 6 from 2 to 8 to encourage the completeness in the
k-th input image. For the simplify strokes, we double the parameter
α in Equation 5 to amplify the structure compactness during the
simplification. We demonstrate the effect of user editing in Figure 9.

7 EXPERIMENTAL RESULTS

7.1 Visual results
We evaluate our method on a wide variety of input line drawing
images with varying complexity. We implement two types of exhibi-
tion modes: (i) orthogonal mode and (ii) in-plane mode. The former
one arranges the virtual cameras in a mutually orthogonal setting,
while the latter places all the cameras on the same plane with vary-
ing viewing angles. We automatically generated 20 multi-view wire
sculptures in total. Figure 12 shows a gallery of the generated wire
sculptures exhibited in orthogonal mode. Examples of in-plane exhi-
bition mode can be found in Figure 1 (middle, right). In addition to
static exhibition, the best way to demonstrate such a unique sculp-
ture art is through a dynamic setting, where the 3D model, camera
poses, and lighting are animated and working together to depict
different input images over time. Please refer to supplementary
material for more static and dynamic examples.

Fig. 11. 3D printouts. Two 3D printouts of multi-view wire sculptures
generated by our system using FDM (middle) and SLM (right) process.

Reproducing artist’s results. We apply our method to reproduce
the elephant/giraffe example. As shown in Figure 10, our 3D wire
sculpture is as accurate as artwork in the projective views, but has
slightly more complex structure than that by the artist (see Figure 2).
Augmenting the inputs to three views (see Figure 12, 1st row) further
demonstrates that our system can produce 3D wire sculptures that
go beyond the complexity of existing pieces of art.

3D printout. To evaluate the physical realizability of the resulting
3D wire sculptures, we take two examples from our gallery and
print out the models using industry-level 3D printing machines
with different levels of resolutions. Specifically, the 3-transportation
sculpture (Figure 12) was printed by a machine with 100-micron
accuracy using FDM (fused deposition modeling) technique with
PLA (polylactic acid). The 3-bird sculpture (Figure 4) was printed
by a machine with 30-micron accuracy using SLM (selective laser
melting) technique with metallic powders (CoCrMo alloy). Figure 11
shows the 3D printouts along with their physical exhibition. Note
that the 3D printout may inevitably suffer from distortion due to the
thin and curve shape of wire structure, and hence introduce more
projection errors than its digital version.

7.2 Evaluation
In this section, we evaluate and characterize the performance of
our method over several important design choices. The source code,
input line drawings, and pre-computed wire sculptures will be made
publicly available to stimulate further research.

Dataset and evaluation metrics. In addition to the triple-image
examples shown in the paper, where the input images are from the
same category and have similar complexity and style, we further
prepared an extra set of 21 triple-image cases by randomly picking
three images out of a large set of 45 input line drawing images with
different styles and varying complexity.

We use two quantitative metrics to evaluate the quality of gener-
ated 3D wire sculptures. Our first metric measures the projection
errors: Edev + Eincomp (Section 5.1). The project errors, however,
may not reflect the quality well due to its sensitivity to outliers.
Our second metric measures the projection accuracy by mean aver-
age precision (mAP). Specifically, we vary the distance threshold
ranging from 0 (precise matching) to 10 pixels (coarse matching),
compute the precision and recall at each step, and compute the mAP
value across all images.
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Our results Input binary images Our results

Fig. 12. Visual results of multi-view wire art. We present several examples of input line drawings with varying complexity. Given a set of three input
images (middle), our system automatically generates 3D wires that exhibits three distinct line drawings when perceived from three orthogonal view points
(left, right). Our method handles inputs with varying complexity. More results can be found in the supplementary material.
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643 1283 2563 5123

(a) Projection error (b) Mean average precision

Fig. 13. Effect of voxelization resolution. (Top) Increasing voxel resolu-
tion helps resolve the intricate details of the inputs in the projected images.
(Bottom) Quantitative results in terms of (a) bidirectional projection er-
ror and (b) mean average precision. The error bars indicate the standard
deviation computed from the set of examples in the dataset.

Resolution of voxelization. As the initial geometry and structure
of 3D curve skeleton are determined by the reconstructed visual
hull, voxel resolution plays a critical role in recovering the details
of the visual hull, particularly due to the intricate details presented
in the line drawings. We characterize the performance over voxel
resolutions N 3 = [5123, 2563, 1283, 643] in orthogonal mode. Fig-
ure 13 shows a visual example as well as the quantitative results.
Our results validate the intuition that increasing voxel resolution
allows us to capture finer details in the inputs. However, this comes
at the cost of memory and computational complexity. We believe
that using an octree-based method can better address the trade-off
than the uniform voxelization in this work.

α = 0.1 α = 0.4 (default) α = 0.9
Fig. 14. Trade-off between structure compactness and projection er-
ror. Setting parameter α in Equation 5 to a small value (left) encourages
extracting curves that align the line drawings well, but suffers from complex
wire structure. On the other hand, setting a large value of α (right) produce
simple wire structures with missing contour at projected views. We empiri-
cally set α = 0.4 (fixed for all the experiments shown in the paper) to strike
a balance between projection error and structure compactness.

Inputs 30 degrees 60 degrees 90 degrees

(a) Projection error (b) Mean average precision

Fig. 15. Effect of angle intervals. When placing all the three view points
on the same plane, the reprojection accuracy depends heavily on the selected
angle intervals. The similarity between the respective projections and the
input images degrades significantly when angle intervals are small (because
it is difficult to optimize the 3D wire with dramatically different projections
under a small view point shift) or close to 90 degrees (because the first and
the third views will be located at opposite viewing directions and create
conflicting contours).

Effect of parameter α . In Section 5.1, we use a parameter α to
control the relative importance between the projection error and
structure compactness during the structure simplification process.
Figure 14 shows the effect of α by generating curve skeleton with
varying α . Setting α to either small value (0.1) or large value (0.9)
may produce over-complex or over-simplified results. Our default
setting with α = 0.4 (fixed throughout all of our experiments) strikes
a balance between projection error and structure compactness.

Viewing angles. In the in-plane mode with three images, we inves-
tigate the effect of angle interval and report the evaluation results
in Figure 15. In the case of three input drawings, placing the view-
points at an angle interval of 60 degrees achieves the best visual
and quantitative results.

Qmetric = 0.046 Qmetric = 0.225

Fig. 16. Quality indicator. (Left) Scatter plot for the 21 cases. (Right) Two
examples of lowest and highest value of Qmetric. The voxels of initial visual
hull and expanded visual hull are colored in blue and red, respectively. Our
quality indicator correlates well with the final projection errors of the wire
sculptures.
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Fig. 17. Comparision with Shadow Art. (Top) The results of Shadow Art [Mitra and Pauly 2009] using input images from Figure 12 (7th row) and Figure 1
(left). (Bottom) The generated visual hull from our method using the same input images. The results from Shadow Art suffer numerous disjoint components in
the reconstructed voxel structures and severely distored 2D projections that deviate from input line drawings (highlighted in red) due to image deformation.

Quality indicator. To evaluate how well the quality of the wire
sculpture relates to the initial discrete visual hull, we propose a qual-
ity indicator metric, Qmetric = |VHinitial |/|VHexpanded |, which com-
putes the ratio between the number of voxels in the initial visual hull
VHinitial and that in the expanded visual hull VHexpanded (see Fig-
ure 5). Higher values of Qmetric indicate more triple-consistent vox-
els in the initial visual hull. For the 21 test cases used for evaluation,
we found that the ratio correlates well with the projection errors
with a Spearman’s rank correlation coefficient = -0.818. Figure 16
shows the scatter plot of all 21 test cases. As computing the ratio
Qmetric is efficient (< 1 minute), we can use it as quick test for qual-
ity, which allows us to filter out challenging cases that may lead to
failures.

Timing analysis. Here we report the timing statistics of running
our non-optimized method on the dataset using a moderate PC with
an Intel Core i7 6700K (3.4GHz) and 32GB memory. The overall time
complexity depends on the voxel resolution and the complexity of
input images. For example, the average running time for simple
images (e.g., 3rd row in Figure 12) and complex images (e.g., 1st row
in Figure 12) with resolution 5123 are 83 and 510 minutes, respec-
tively. Decreasing the resolution to 2563 will yield a 7X speedup.
The major computational bottleneck lies in the connectivity opti-
mization step in Section 4.2 (73% of the total running time). Using the
proposed constrained 3D pathfinding algorithm provides more than
2X speedup. The structure simplification (Section 5.2) that occupies
27% of running time mainly depends on the complexity of input
images. The average running time for generating discrete visual
hull (Section 4.1) and curve fitting and deformation (Section 5.3)
took about 1− 3 seconds and is thus negligible. Employing a hierar-
chical multi-scale implementation and parallelizing the sequential
algorithm of 3D pathfinding can further speed up the system.

Comparision with Shadow Art. We ran the code of [Mitra and
Pauly 2009] on 11 three-view examples. As shown in Figure 17, the

resultant voxel structures generated by [Mitra and Pauly 2009] may
contain many disjoint components due to the highly inconsistent
nature of input line drawings. Moreover, a severely distorted pro-
jection is often inevitable due to an image deformation approach
for eliminating inconsistent voxels. Our system, in contrast, can
generate voxel structures with one single connected component
without introducing significant projection errors. Please refer to the
supplementary material for a complete set of comparison.

7.3 Limitations
Our method has limitations in the following aspects.

Results. Surprisingly, we find that the our method does not per-
form well on simple input images. Figure 18 shows an example in
orthogonal mode. In this case, our method produces clearly visible
artifacts due to the difficulty in resolving inconsistency from sim-
ple contours. Our approach also has difficulty in resolving dense
line strokes (e.g., hairs) in the projected image due to limited voxel
resolution.

Speed. Our current implementation may take up to several hours
to construct a multi-view wire sculpture (depending on the chosen
voxel resolution and input line drawing complexity). Once the initial

Inputs Our results

Fig. 18. Limitations. Our system fails to delineate clean contours with very
simple shapes due to large inconsistency between input images.
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wire sculpture is constructed, the user editing (Section 6) can run at
interactive rate.

Optimization. While our results validate the capability of our
algorithm for generating multi-view wire sculptures, the proposed
method involves on several heuristic (and therefore brittle) opti-
mization steps. Formulating the problem as a more principled global
optimization framework is an important future direction.

Fabrication. Our system does not incorporate any physical simu-
lations nor impose the single wire assumption as in [Liu et al. 2017].
Consequently, we cannot guarantee the generated wire sculptures
are 3D printable. Possible ways to achieve fast and inexpensive 3D
printing include considering the constraints of the wire-bending
machine in the modeling process [Miguel et al. 2016], or decompos-
ing the wire sculpture into a set of single wires and fabricating each
wire separately.

8 CONCLUSIONS
We have presented a method for enabling novice users to construct
multi-view wire sculptures. The core idea of our approach lies in
reconstructing visual hull and extracting curve skeletons to balance
projection error and spatial compactness. Through extensive evalua-
tions in both simulation and 3D physical printout, we show that our
method can produce smooth and compact wire sculptures exhibiting
multiple prescribed images with minimum distortions. We believe
that our framework can help democratize this unique art form and
enable artists, designers, and hobbyists to create their own multi-
view wire sculptures. We see several interesting future directions.
This work focuses on creating wire sculptures with one connected
component. Creating sculptures with multiple parts may provide
more complex interactions among parts and offer richer viewing ex-
periences. Our current approach resolves the inconsistency among
input line drawings through minimizing the projection errors based
on the original input images. An semantic-aware method may help
significantly improve the visual quality by favoring projected lines
that are plausible in the input line drawings.
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